Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Database
Language
Document Type
Year range
1.
Indian J Med Microbiol ; 2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2252131

ABSTRACT

PURPOSE: Despite COVID vaccination with ChAdOx1 ncov-19 (COVISHIELD®) (ChAdOx1 ncov-19) a large number of healthcare workers (HCWs) were getting infected in wave-2 of the pandemic in a cancer hospital of India. It was important therefore to determine the genotypes responsible for vaccine breakthrough infections. METHODS & OBJECTIVES: Retrospective observational study of HCWs. Whole genome sequencing of SARS CoV-2 using Illumina NovaSeq was done. Mutations from both waves were compared to identify genomic correlates of transmissibility and vaccine breakthrough infections. RESULTS: Vaccine breakthrough infections were seen in 127 HCWs out of 1806 fully vaccinated staff (7.03%). Median number of HCWs infected per day in wave-1 was 0.92 versus 3.25 in wave-2. Majority of wave-1 samples belonged to B.1 and B.1.1 lineage. Variant of concern- Delta variant (90%), and variant of interest- Kappa variant (10%), was seen in only wave-2 samples. Total mutation observed in wave-2 samples (median â€‹= â€‹44) was 1.8 times than wave-1 sample (median â€‹= â€‹24). Spike protein in wave-2 samples had 13 non-synonymous mutation as compared to 8 seen in wave-1 samples. E484Q-vaccine escape mutant was detected in five samples of wave-2; T478K - highly infectious mutation was seen in 31 samples of wave-2. We identified a novelcoding disruptive in-frame deletion (c.467_472delAGTTCA, p. Glu156_Arg158delinsGly) in the Spike protein. This mutation was seen only in wave-2 (78%, n â€‹= â€‹39) samples. CONCLUSION: The circulating virus strains in wave-2 infections demonstrated a greater degree of infectivity. There was a significant change in the genotypes observed in wave-1 and wave-2 infections along with almost twice the number of mutations. We noted that vaccine breakthrough infections (although mostly mild).

2.
Trends Mol Med ; 29(4): 255-267, 2023 04.
Article in English | MEDLINE | ID: covidwho-2181694

ABSTRACT

SARS-CoV-2 vaccination significantly reduces morbidity and mortality, but has less impact on viral transmission rates, thus aiding viral evolution, and the longevity of vaccine-induced immunity rapidly declines. Immune responses in respiratory tract mucosal tissues are crucial for early control of infection, and can generate long-term antigen-specific protection with prompt recall responses. However, currently approved SARS-CoV-2 vaccines are not amenable to adequate respiratory mucosal delivery, particularly in the upper airways, which could account for the high vaccine breakthrough infection rates and limited duration of vaccine-mediated protection. In view of these drawbacks, we outline a strategy that has the potential to enhance both the efficacy and durability of existing SARS-CoV-2 vaccines, by inducing robust memory responses in the upper respiratory tract (URT) mucosa.


Subject(s)
COVID-19 , Viral Vaccines , Humans , COVID-19 Vaccines , Immunity, Mucosal , COVID-19/prevention & control , SARS-CoV-2 , Breakthrough Infections , Vaccination
3.
BMC Infect Dis ; 22(1): 718, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-2009362

ABSTRACT

BACKGROUND: COVID-19 vaccines are an effective tool to prevent illness due to SARS-CoV-2 infection. However, infection after vaccination still occurs. We evaluated all infections identified among recipients of either the Pfizer-BioNTech or Moderna COVID-19 vaccine in five U.S. states during January-March 2021. METHODS: Using observational data reported to CDC, we compared the incidence of SARS-CoV-2 infection among vaccinated and unvaccinated persons, and the sex, age, and vaccine product received for individuals with vaccine breakthrough infections to those of the vaccinated population using Poisson regression models. We also compared the proportion of vaccine breakthrough cases due to a SARS-CoV-2 variant of concern to data reported to CDC's national genomic surveillance program. RESULTS: The age-adjusted incidence of reported SARS-CoV-2 infection was 97% lower among vaccinated as compared to unvaccinated persons aged ≥ 16 years (68 vs 2252 cases per 100,000 people). Vaccinated adults aged ≥ 85 years were 1.6 times (95% CI 1.3-1.9) as likely to become infected with SARS-CoV-2 than vaccinated adults aged < 65 years. Pfizer-BioNTech COVID-19 vaccine recipients were 1.4 times (95% CI 1.3-1.6) as likely to experience infection compared to Moderna COVID-19 recipients. The proportion of infections among vaccinated persons caused by SARS-CoV-2 variants of concern was similar to the proportion of circulating viruses identified as variants of concern in the five states during the same time. CONCLUSIONS: Vaccinated persons had a substantially lower incidence of SARS-CoV-2 infection compared to unvaccinated persons. Adults aged ≥ 85 years and Pfizer-BioNTech vaccine recipients had a higher risk of infection following vaccination. We provide an analytic framework for ongoing evaluation of patterns associated with SARS-CoV-2 infection among vaccinated persons using observational surveillance and immunization data. Our findings reinforce the effectiveness of COVID-19 vaccines in preventing infection in real-world settings.


Subject(s)
COVID-19 , Viral Vaccines , 2019-nCoV Vaccine mRNA-1273 , Adult , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunization Programs , Risk Factors , SARS-CoV-2 , Vaccination
4.
J Med Virol ; 94(4): 1696-1700, 2022 04.
Article in English | MEDLINE | ID: covidwho-1718390

ABSTRACT

Emerging reports of SARS-CoV-2 breakthrough infections entail methodical genomic surveillance for determining the efficacy of vaccines. This study elaborates genomic analysis of isolates from breakthrough infections following vaccination with AZD1222/Covishield and BBV152/Covaxin. Variants of concern B.1.617.2 and B.1.1.7 responsible for cases surge in April-May 2021 in Delhi, were the predominant lineages among breakthrough infections.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19/administration & dosage , Female , Genome, Viral/genetics , Genomics , Humans , India/epidemiology , Male , Middle Aged , Phylogeny , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Vaccination , Vaccines, Inactivated/administration & dosage , Young Adult
5.
J Med Virol ; 94(5): 2237-2249, 2022 May.
Article in English | MEDLINE | ID: covidwho-1664417

ABSTRACT

As the coronavirus disease 2019 (COVID-19) pandemic is still ongoing and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are circulating worldwide, an increasing number of breakthrough infections are being detected despite the good efficacy of COVID-19 vaccines. Data on 88 COVID-19 breakthrough cases (breakthrough infections group) and 41 unvaccinated cases (unvaccinated group) from June 1 to August 22, 2021, were extracted from a cloud database established at Beijing Ditan Hospital to evaluate the clinical, immunological, and genomic characteristics of COVID-19 breakthrough infections. Among these 129 COVID-19 cases, 33 whole genomes were successfully sequenced, of which 23 were Delta variants, including 15 from the breakthrough infections group. Asymptomatic and mild cases predominated in both groups, but two patients developed severe disease in the unvaccinated group. The median time of viral shedding in the breakthrough infections group was significantly lower than that in the unvaccinated group (p = 0.003). In the breakthrough infections group, the IgG titers showed a significantly increasing trend (p = 0.007), and the CD4 + T lymphocyte count was significantly elevated (p = 0.018). For people infected with the Delta variant in the two groups, no significant difference was observed in either the quantitative reverse-transcription polymerase chain reaction results or viral shedding time. In conclusion, among vaccinated patients, the cases of COVID-19 vaccine breakthrough infections were mainly asymptomatic and mild, IgG titers were significantly increased and rose rapidly, and the viral shedding time was shorter.


Subject(s)
COVID-19 , Beijing/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Genomics , Humans , SARS-CoV-2/genetics
6.
Vaccines (Basel) ; 10(1)2021 Dec 31.
Article in English | MEDLINE | ID: covidwho-1580341

ABSTRACT

This study elucidated the clinical, humoral immune response and genomic analysis of vaccine breakthrough (VBT) infections after ChAdOx1 nCoV-19/Covishield vaccine in healthcare workers (HCWs). Amongst 1858 HCWs, 1639 had received either two doses (1346) or a single dose (293) of ChAdOx1 nCoV-19 vaccine. SARS-CoV-2 IgG antibodies and neutralizing antibodies were measured in the vaccinated group and the development of SARS-CoV-2 infection was monitored.Forty-six RT-PCR positive samples from the 203 positive samples were subjected to whole genome sequencing (WGS). Of the 203 (10.92%) infected HCWs, 21.46% (47/219) were non-vaccinated, which was significantly more than 9.52% (156/1639) who were vaccinated and infection was higher in doctors and nurses. Unvaccinated HCWs had 1.57 times higher risk compared to partially vaccinated HCWs and 2.49 times higher risk than those who were fully vaccinated.The partially vaccinated were at higher risk than the fully vaccinated (RR 1.58). Antibody non-response was seen in 3.44% (4/116), low antibody levels in 15.51% (18/116) and medium levels were found in 81.03% (94/116). Fully vaccinated HCWs had a higher antibody response at day 42 than those who were partially vaccinated (8.96 + 4.00 vs. 7.17 + 3.82). Whole genome sequencing of 46 samples revealed that the Delta variant (B.1.617.2) was predominant (69.5%). HCWs who had received two doses of vaccine showed better protection from mild, moderate, or severe infection, with a higher humoral immune response than those who had received a single dose. The genomic analysis revealed the predominance of the Delta variant (B.1.617.2) in the VBT infections.

SELECTION OF CITATIONS
SEARCH DETAIL